Stabilising 100% Renewable Grids: The Integrated FIRM Strategy

Dr Bin Lu

ANU Centre for Energy Systems

- ☑ Bin.Lu@anu.edu.au
- OrBinLu.com | Turning Science into Stories

Generation

Flexible renewable generation, e.g.,

- Hydropower
- Biomass
 Geothermal

Transmission

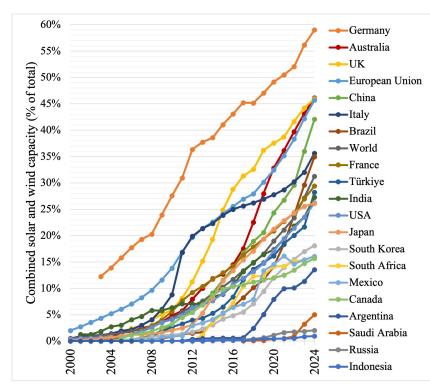
Interconnection between electricity grids via:

- High-voltage
- alternating current
 High-voltage direct current

Storage

Mass electricity storage, e.g.,

- Pumped hydro
- Batteries
- Batteries
 Thermal
- Compressed air
- Power-to-gas


Utilisation

Response from demandside participation, e.g.,

- Electric vehicle batteries
- Hot water storage
- Industrial hydrogen storage

Global Renewable Energy Growth

Growth of solar and wind share in generation capacity, G20 economies. Data source: IRENA (2025).

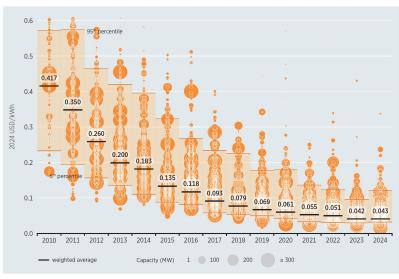
Global

- Solar + wind > 3000 GW, ~30% of global power generation capacity.
- Leaders: Germany (59%); Australia, UK, EU (46%).
- Top emitters: China (42%), USA (26%), India (27%).

Australia

 Renewables (excl. hydropower) = 55 GW (40 GW solar, 15 GW wind).

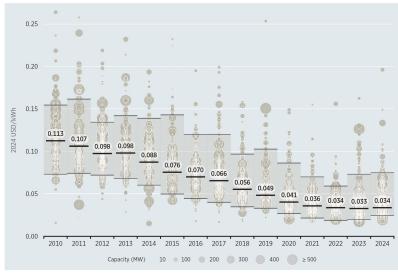
PROVIDER CODE: 00120C


TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

- Target: 82% renewables in the National Electricity Market by 2030.
- Capacity Investment Scheme: +40 GW by 2030.

Falling Costs of Renewables

Figure 3.8 Global utility-scale solar PV project LCOE and range, 2010-2024



Notes: kWh = kilowatt hour: MW = megawatt: USD = United States dollar.

Solar PV

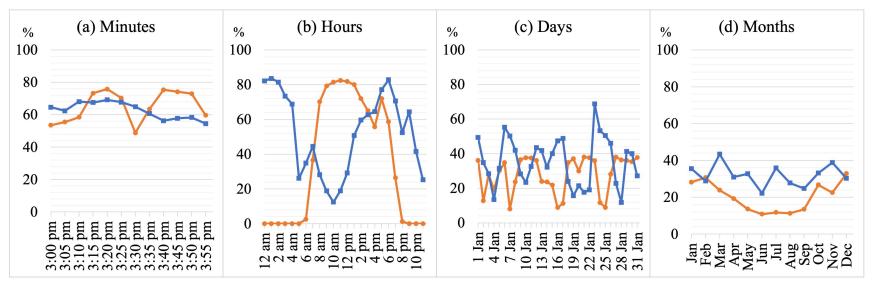
- Cost fell by 90% (417 \rightarrow 43 US\$/MWh, 2010–2024)
- Australia's 30-30-30 goal: 30% efficiency, 0.30 AU\$/W, by 2030

Figure 2.14 LCOE of onshore wind projects and global weighted average, 2010-2024

Notes: kWh = kilowatt hour; MW = megawatt; USD = United States dollar.

Source: IRENA (2025).

Wind

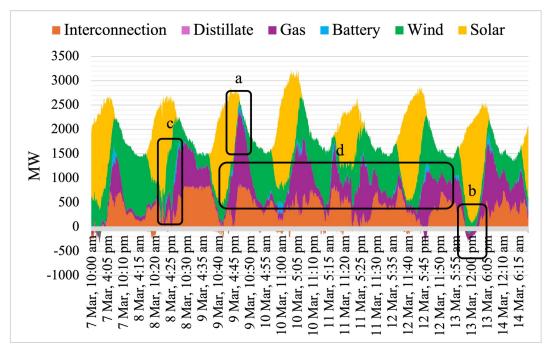

- Onshore: cost fell by 70% (113 \rightarrow 34 US\$/MWh, 2010–2024)
- Offshore: cost fell by 62% (208 \rightarrow 79 US\$/MWh, 2010–2024)

PROVIDER CODE: 00120C

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

Solar & Wind Characteristics

Power output (% of rated capacity) from Darlington Point Solar Farm (orange) and Coopers Gap Wind Farm (blue). Source: Lu (2025), Net Zero.


- Solar & wind: weather-dependent, variable and uncertain (not a bug, but a feature!)
- Capacity factors: solar <30%, wind ~33% on average (Australia)
- Variability occurs at multiple timescales: minutes, hours, days, months.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

PROVIDER CODE: 00120C

Challenges of High Renewables

South Australia's generation mix (7–14 March 2025) highlighting challenges of high renewable energy penetration. Source: Open Electricity.

- a. Capacity inadequacy: little/no solar & wind
 → insufficient supply
- b. Low minimum generation: excess renewables force thermal units near technical limits
- c. High ramping: rapid solar drop + evening peak → fast ramping by gas turbines
- d. Frequent cycling: thermal generators switched on/off, ramped up/down more frequently

FIRM Strategy

Generation

Flexible renewable generation, e.g.,

- Hydropower
- Biomass
- Geothermal

Transmission

Interconnection between electricity grids via:

- High-voltage alternating current
- High-voltage direct current

Storage

Mass electricity storage, e.g.,

- Pumped hydro
- Batteries
- Thermal
- Compressed air
- Power-to-gas

Utilisation

Response from demandside participation, e.g.,

- Electric vehicle batteries
- Hot water storage
- Industrial hydrogen storage

Flexible renewable generation

Hydropower & bioenergy provide operational flexibility

Interconnection between electricity grids

Electricity flows across regions, smoothing out renewable variations

Response from demand side

Smart energy systems empower consumers to support grid balancing

Mass electricity storage

Energy shifts day/night, windy/windless periods

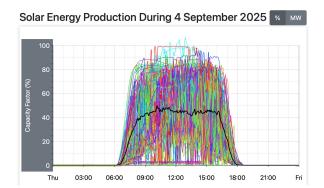
FIRM strategy to unlock system-wide flexibility across the electricity supply chain. Source: Lu (2025) *Net Zero*.

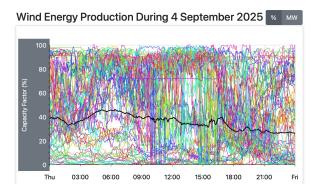
Flexible Renewable Generation

Hydropower

- Storage dams, run-of-river
- Fast ramping to stabilise the grid
- 1400 GW worldwide (one third of renewables)
- Constrained by resource limits and environmental impacts

Bioenergy


- Crops, residues and waste for power, heat, and fuels
- Potentially carbon neutral, but emits pollutants and particulates
- 150 GW worldwide
- Land-use competition with food, feed and materials


Geothermal

- Heat from Earth's crust
- High capacity factor (e.g., > 80%) for 24/7 baseload power
- Geographically constrained, e.g., Pacific Ring of Fire

Interconnection of Grids

Titlas

Ciscus

Ciscus

Intips://new.abb.com/systems/hydo/neferences/changi-guquan-uhydo-laix

Changji-Guquan HVDC link (China)

North Sea Link (Norway-UK)

Grid interconnection aggregates solar and wind across regions, creating a smoothing effect. Source: Aneroid Energy.

High-voltage alternating current (HVAC)	High-voltage direct current (HVDC)	
Easy voltage conversion with transformers	Needs converter stations (power electronics)	
Higher losses (reactive power, skin effect, frequency-related)	Lower losses (~3% per 1000 km)	
Low terminal cost, high line cost	High terminal cost, low line cost	
Dominant for national and regional grids	Cost-effective for very long -distance and undersea links	
Grids are synchronously coupled: faults can spread	Grids are decoupled: faults remain isolated	

Response from demand side

Residential & commercial

- EV batteries, hot water tanks, home batteries
- Embedded in local grids, close to final consumption
- Reduce grid pressure by shifting loads
- Flexibility without behaviour change

From homes to industries, demand-side storage is a powerful buffer for renewables.

More: Lu et al. (2025) Renewable Energy, 123920.

Industrial

- Hydrogen & e-fuel production as large flexible loads
- Ramp up/down with renewable availability
- Flexibility from minutes to months

Mass Electricity Storage

The energy future will be built on a mix of diverse, complementary storage solutions.

Pumped hydro	Batteries	Thermal storage	Compressed air
80% round-trip efficiency	85–95% round-trip efficiency (lithium-ion)	40–55% round-trip efficiency	60–70% (adiabatic CAES)
50–100 year lifetime	10–20 year lifetime	30–40 year lifetime	30–40 year lifetime
Needs suitable geography, geology & hydrology	Can be built almost anywhere	Can be built almost anywhere	Needs high-pressure environment, e.g., underground salt caverns
Cost: tens-hundreds USD/kWh	Cost: hundreds USD/kWh, falling fast, modular design	Cost: tens USD/kWh	Cost: hundreds USD/kWh
Ramps in minutes, provides inertia	Responds in seconds, fast response	Ramps in minutes–hours, provides inertia	Ramps in minutes, provides inertia

Source: Lu (2019) Short-Term Off-River Energy Storage.

10

Energy Balance Modelling

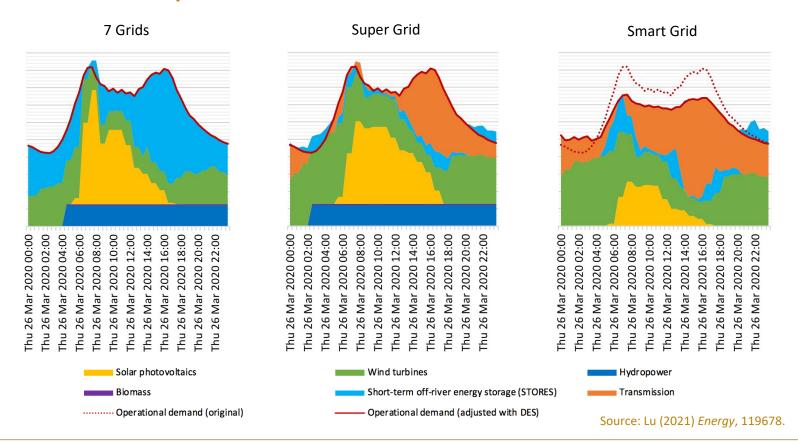
Energy balance modelling can provide insight into the energy reliability and affordability of high-renewable scenarios.

Can do

- Develop various strategies for balancing variable renewable energy resources
- Investigate trade-offs between energy storage (energy time-shifting) and electricity grid interconnection (energy geo-shifting)
- Identify most challenging periods when renewable energy is constrained while electricity demand is high

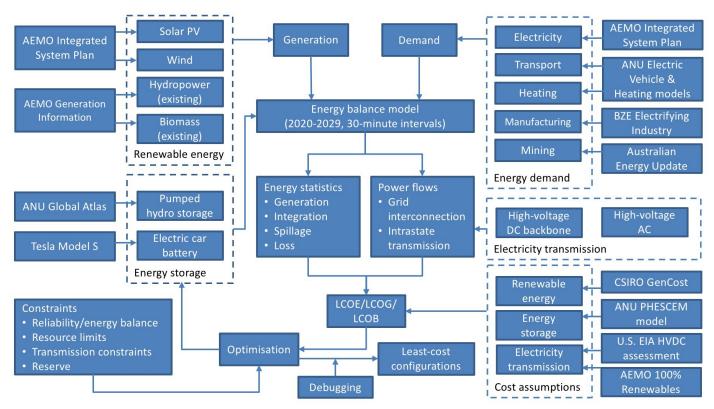
Cannot do

- Power system stability analysis (subseconds to minutes)
- AC network modelling (reactive power flows)



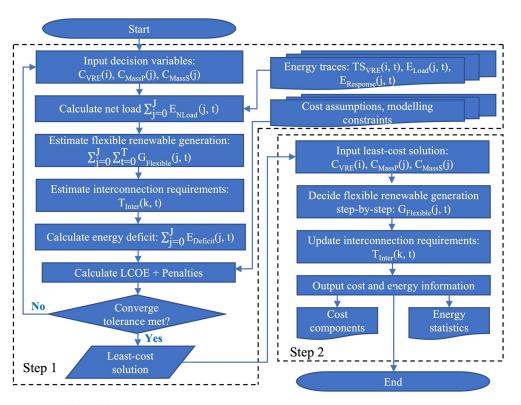
EQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICO

PROVIDER CODE: 00120C


11

Simulation Snapshots

FIRM Modelling Framework


Source: Lu (2021) Energy, 119678.

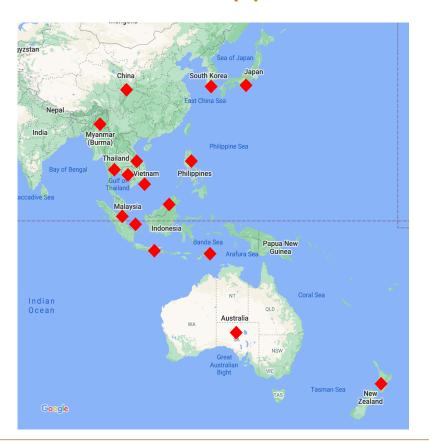
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

PROVIDER CODE: 00120C

Two-Step Modelling Approach

The advantage of this two-step modelling approach is that it separates the time-consuming scheduling (Step 2) from heuristic optimisation (Step 1).

- Co-optimise generation, storage and transmission using high-resolution, chronological data.
- Integrate diverse strategies to support high shares of solar and wind.


PROVIDER CODE: 00120C

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

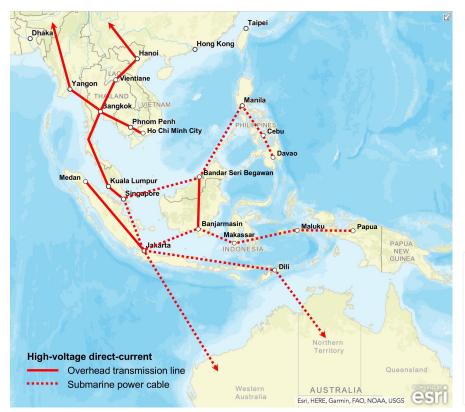
Source: Lu (2025) Net Zero.

FIRM Model Applications

Research coverage

- Australia, New Zealand
- Southeast Asia: ASEAN-10 + Timor-Leste
- Northeast Asia: China, Japan, Korea

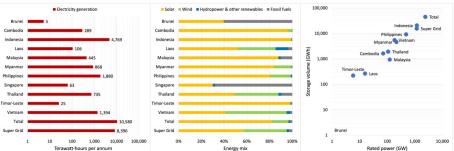
Key findings


- FIRM strategy makes high-renewable grids reliable, affordable & resilient.
- Transition to 100% renewables delivers substantial energy, economic & environmental benefits.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

PROVIDER CODE: 00120C

ASEAN Study



Q1. Is a Super Grid technically and economically viable?

- Yes Technically feasible with HVDC technology
- Yes Cost-competitive versus isolated national markets

Q2. Benefits for ASEAN?

- 20% fewer electricity generation capacity
- 70% more wind energy integration
- 65% low energy storage needs

PROVIDER CODE: 00120C

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS

Source: Lu (2021) Energy, 121387.

16

Questions?

Dr Bin Lu

ANU Centre for Energy Systems

⊠ Bin.Lu@anu.edu.au

OrBinLu.com | Turning Science into Stories

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C